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ABSTRACT

Vertical hetero-structures made from stacked monolayers of transition metal dichalcogenides
(TMDC) are promising candidates for next-generation optoelectronic and thermoelectric
devices. Identification of optimal layered materials for these applications requires the
calculation of several physical properties, including electronic band structure and thermal
transport coefficients. However, exhaustive screening of the material structure space using ab
initio calculations is currently outside the bounds of existing computational resources.
Furthermore, the functional form of how the physical properties relate to the structure is
unknown, making gradient-based optimization unsuitable. Here, we present a model based on
the Bayesian optimization technique to optimize layered TMDC hetero-structures, performing
a minimal number of structure calculations. We use the electronic band gap and
thermoelectric figure of merit as representative physical properties for optimization. The
electronic band structure calculations were performed within the Materials Project
framework, while thermoelectric properties were computed with BoltzTraP. With high
probability, the Bayesian optimization process is able to discover the optimal hetero-structure
after evaluation of only ~20% of all possible 3-layered structures. In addition, we have used a
Gaussian regression model to predict not only the band gap but also the valence band
maximum and conduction band minimum energies as a function of the momentum.

INTRODUCTION

Multi-layered hetero-structures made from vertically stacked, two-dimensional, transition
metal dichalcogenides (TMDC) have unique optoelectronic and thermoelectric characteristics,
due to the relatively weak interlayer interactions and the concomitant two-dimensional
confinement 1-3. Unlike large band gap materials like hBN (insulator) 4 and zero-band gap
graphene (semi-metal) 5, these hetero-structures have band gaps comparable to conventional
semi-conductors like Si and GaAs. Furthermore, the band gap and other properties (e.g.
thermal conductivity) of these materials can be tuned to desired values by changing the
composition of each layer as well as the total number of layers. This makes these multi-
layered materials promising candidates for next-generation electronic devices (e.g. field effect
transistors), where band gap and thermal properties can be used as a screening parameter for
specific applications 6, 7.
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As the number of layers, N, of the hetero-structure increases, both the combinatorial 

number of layer configurations and the computational time required for ab initio calculations 
of each hetero-structure’s material properties increases as O(n3), where n is the number of 
atoms. Hence, performing exhaustive density functional theory (DFT) calculations (which are 
the root of the O(n3) computational complexity) becomes infeasible for large N.  Recently, 
machine-learning methods have shown phenomenal success in the material science domain 
for high-throughput screening and property prediction 8, 9. For example, statistical models 
built using a small fraction of a family of structures can be used to accurately predict a wide 
range of material properties like band gap 10, 11, dielectric breakdown strength 12, 13 and 
melting point 11. Machine-learning methods like support vector regression 10, 11, neural 
network 14 and kernel ridge regression 15 are shown to accurately predict the band gap in 
double perovskites 16 and in polymers 17. For many applications, however, we only need to 
find materials with physical properties beyond a certain threshold value.  Building a 
regression model and using that model to predict material properties of each structure until the 
desired structure is found, is not an efficient process as it requires a substantial amount of 
expensive computation to build the model.  A promising machine-learning technique to solve 
this problem, known as Bayesian optimization 18-20, optimizes a black box function with 
minimal function evaluations. 

In this work, we have developed a model based on Bayesian optimization to find the 
TMDC hetero-structure with a desired property by performing a minimal number of structure 
evaluations for 3-layer hetero-structures.  In our case we use the maximum band gap and 
thermoelectric figure of merit as examples of such desired properties. We also developed a 
regression model using Gaussian processes 16, 21, 22 to predict the band gap and band structure 
for 3-layer hetero-structures. 

METHOD 

Material Property Calculations 

Each layer in a N-layer hetero-structure consists of two types of atoms: A and B. A can be 
either molybdenum (Mo) or tungsten (W), while B can be either sulfur (S), selenium (Se) or 
tellurium (Te).  Thus, there exist 6N possible configurations for N-layer hetero-structures.  
There are, then, 216 3-layer hetero-structures, for all of which we computed material 
properties.  Structure files for all 3-layer hetero-structures were generated automatically and 
uploaded to the Materials Project (MP) database 23 using the pymatgen 24 library. The 
electronic band structures are calculated using density functional theory (DFT) with the
projector augmented wave 25 method implemented in the Vienna Ab Initio Simulation 
Package (VASP) 26, 27. The exchange and correlation energies are approximated with the 
Perdew-Burke-Ernzerhof version of the generalized gradient approximation 28.  All 3-layered 
hetero-structures are represented by a 9-atom unit cell, with periodic boundary conditions in 
all directions.  The 9 atoms consist of three sets of 3 atoms, each set representing one layer. 
First, both the unit cell and the atoms within are allowed to relax. Next, a self-consistent field 
iteration is performed to obtain the electron wave functions. Finally, the electronic band 
structure is calculated from the resulting wave functions. Once the electronic structures are
computed within the MP database, the data is downloaded, again using pymatgen, and 
BoltzTraP 29 is run on the results to compute thermoelectric properties of the hetero-
structures.
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Feature Vector 

 Two important atomic properties that determine both electronic band structure and 
thermoelectric properties of a material are the electronegativity and first ionization potential.  
Thus, to uniquely represent each structure, every atom type in each layer is represented by its 
electronegativity and first ionization potential.  Since each layer consists of two elements, a 3-
layered structure will be represented by a 12-dimensional vector, where the first four 
components of the vector are the electronegativity and first ionization potential of the atoms 
species in the first layer, the next four components are from the second layer, and remaining 
four are from the third layer. To build a Gaussian process regression model for band gap and 
band structure prediction, a squared exponential kernel is used: 

. Here, and each run over all 3-layered hetero-structures and are 12-
dimensional vectors with components and , respectively.  are tunable hyper-
parameters, associated with each component of the feacture vector, estimated from the training 
data using maximum likelihood estimate. 

RESULTS 

Band Gap Prediction 

We built a Gaussian regression  model to predict the band gap in 3-layered hetero-
structures. To determine the appropriate training data set size, regression models are built 
using different percentages of the total data set (216 structures) as the training data set, 
ranging from 40% to 70%.  Figures 1(a) and 1(b) show the band gap prediction for the test 
data set (all remaining structures not in the training data set) for two models built using 40% 
and 60% of the data in the training data set, respectively.   

Figure 1: Prediced band gap on test data for two models built using 40% (a) and 60% (b) training data sets.
Here, the red, solid curve is the true value of the band gap (computed from DFT calculations), while the
blue, dashed curve is the predicted value of the band gap (predicted using the Gaussian regression model).
The yellow regions specify a 95% CI of the predicted value. (c) Predicted CBM (dashed, cyan) and VBM 
(dashed, meganta) along with their true values in solid blue (CBM) and red (VBM) of one model tri-layer 
structure in the test data set. Here, the yellow and green shaded areas represent 95% CI of the predicted 
value and the wave vector is given in arbitrary units running along a line of high symmetry.

The model built using 40% has a larger confidence interval (CI) and the predicted band gap for 
many structures lies outside the 95% CI. In contrast, the model made from 60% is more robust, 
with smaller CI. To further test the robustness of the model, all 3-layer structures are randomly 
split into training and test data sets, with either 40% or 60% training data, 100 times. After 
building the model, the mean square error (MSE) for each model is used to calculate the 
prediction accuracy. The average prediction error of these 100 runs for models built using 40% 
and 60% training data set is 0.167 and 0.144, respectively. While the MSE only slightly 
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decreases, the width of the confidence interval (CI) becomes much smaller with the larger 
training data set.  We also observe that increasing the training data set beyond 60% shows little 
improvement in results. Hence, a training data set comprised of 60% of the total number of 
structures is sufficient to build a model both with low MSE and CI.

Band Structure Prediction 

A Gaussian regression model is also built to predict the shape of the valence-band 
maximum (VBM) and conduction-band minimum (CBM) as a function of the momentum 
along lines of high symmetry in the first Brillouin zone. Unlike the previous case where the 
target variable Y (band gap) is a scalar, here the target variables are two vectors, one for the 
VBM ( ) and the other for the CBM ( ). These vectors consist of 30 discretized points, 
where each point corresponds to a particular wave vector and the component of ( ) is the 
energy value of VBM(CBM) at that point. A regression model is build using ~60% of the data
in the training data set at each of these 30 points and the predicted output from these 30 models 
are used to construct the shape of VBM and CBM. Figure 1(c) shows the predicted VBM and 
CBM for one of the structures in test data.

Bayesian Optimization 

 For many applications, we only need to find the structure with the maximum band gap or 
thermo-electric figure of merit, T2. Since each calculation is time consuming, Bayesian 
optimization can be used for efficient discovery of the material with desired properties (i.e.
with minimal structure calculations). While we attempt to find the maximum values of each 
property, Bayesian optimization is also capable of finding the structure with a property closest 
to a desired value.  In the Bayesian optimization process, first, a Gaussian process regression 
for the band gap or T2 value is built by randomly selecting 10 structures from all possible 3-
layered structures. Then, the next structure to be computed is chosen based on the trade-off 
between exploration (to diversify the search) and exploitation (to follow the trend found by the 
current estimates).  Since the true functional form of the objective function is unknown, the 
procedure optimizes a surrogate function called acquisition function 18, 20.  Among the available 
acquisition functions, such as probability of improvement, upper confidence bounds, and 
expected improvement, we used expected improvement (EI). The value of EI for the structures 
which are not in the training data is calculated, and the structure with the maximum EI is used 
as a guess for the optimal structure with respect to the desired property. This completes one 
iteration of Bayesian optimization, and we perform a total of 30 iterations.

In 3-layer structures with a total of 216 structures, only 5 structures have band gap above 
1.35 eV, and the remaining structures have bandgap below 1.30eV. The band-gap values of 
these 5 structures are shown in Table 1.

Structure Band Gap [eV] Frequency (%)
WS2-WS2-WS2 1.56 46.4
WSe2-WSe2-WSe2 1.51 16.2
MoSe2-MoSe2-MoSe2 1.41 25.6
MoS2-MoS2-MoS2 1.39 10.4
MoS2-MoS2-WS2 1.35 1.2

Total 99.8
Table 1: (Column 2) Band gap of the top five structures in 3-layered hetero-structure. (Column 3) 
Frequency of each of these structures in 500 runs of Bayesian optimization, where each Bayesian 
optimization run consists of 30 iterations.

The table also shows the frequency of each of these structure in 500 runs of Bayesian 
optimization, where in each run 10 initial structures are randomly choosen and the model is ran 
for a total of 30 iterations. It can be seen from Table 1 that our model is able to determine one 
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of the best five structures 99.8% of the runs within 30 iterations. Figure 2 shows the histogram 
of the number of runs the model takes to predict the optimal structure.  Here, 0 steps 
corresponds to the cases where the initial 10 data points contained one of the five best 
structures. In the remaining cases, we see that at most 30 iterations are required to determine 
one of the five best structures.  

Figure 2: Histogram of the total number of iteration steps required to determine the optimal structure.

We have also performed Bayesian optimization of the thermoelectric figure of merit, and 
found that the top three structures are WTe2-MoTe2-WTe2, MoSe2-WSe2-WSe2 and WSe2-
MoSe2-WSe2.  Again Bayesian optimization is able to predict one of these three structures 
within 30 iterations, taking only 5 structures as initial data points.

CONCLUSIONS 

We have demonstrated that Bayesian optimization significantly reduces the computation 
time required to search for the material with a desired physical property, using the band gap 
and thermo-eclectic figure of merit as examples.  With only few initial sample structures as a 
training data set, we were able to find the 3-layer hetero-structures with maximum band gap 
(WS2-WS2-WS2) and maximum thermo-electric figure of merit (WTe2-MoTe2-WTe2) within 30 
structure evaluations.
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